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Abstract-The finite elastic deformation of hollow circular cylinders and spheres under applied
uniform internal pressure is studied and conditions for the initiation ofa localized shear bifurcation
are obtained. The location of this bifurcation relative to the pressure maximum is investigated. It
is shown that when the ratio of the outer undeformed radius to the inner undeformed radius is
larger than a critical value, the shear bifurcation occurs before the pressure maximum is attained,
while when this ratio is smaller than the critical value, the converse is true. The analysis is carried
out for a particular compressible clastic foam rubber material (the Blatz-Ko material). The results
are obtained in closed analytic form.

I. INTRODUCTION

Recently Abeyaratne and Horgan[l] obtained an exact solution to a problem describing
finite plane strain deformation of an infinite medium, composed of a certain compressible
nonlinearly elastic material, the so-called Blatz-Ko material. The problem considered in
(1] concerned an infinite medium with a circular cylindrical cavity under pressure loading
conditions. In this paper we show that the solution technique of [I] may be applied also to
the case of pressurized hollow cylinders and spheres with finite radii, and we carry out a
detailed investigation of the solution to these basic problems of nonlinear elasticity.

The material considered in this study is a particular homogeneous, isotropic, com
pressible elastic material, namely the Blatz-Ko material. The pressurized cylinder and
sphere problems in finite elasticity for incompressible materials have been considered pre
viously by many authors (see e.g. [2, 3]) and are simpler, since the incompressibility
constraint immediately yields an explicit expression for the (axially symmetric) deformation
field. Such simplification does not occur for compressible materials.t

The "Blatz-Ko material" is a mathematical model characterizing the constitutive
behavior of a certain foam rubber-like material and was proposed by Blatz and Ko[7] on
the basis of experiments carried out by them. An extensive discussion of its properties may
be found in [7] and also in the paper of Knowles and Sternberg[8]. One interesting feature
of the Blatz-Ko material is that the system of partial differential (displacement) equations
governing the equilibrium of a body composed of such a material may cease to be elliptic
at sufficiently severe strain levels[8]. In the present work, we are interested in examining
the implications of this for the pressurized cylinder and sphere problems.

In the next section, the problem of a hollow circular c¥linder composed of the Blatz
Ko material subject to internal pressure is formulated. In Sections 3 and 4, the solution to
the resulting boundary value problem is obtained and features of the solution are discussed.
In particular, it is found that as the applied pressure p is increased from zero, the deformed
radius increases until p reaches a maximum value. Subsequently, p decreases even though
the deformed radius still increases (see Figs I and 2). Such non-monotone pressure vs
radius relationships are well known in finite elasticity, particularly for incompressible

t Present address: Department of Mechanical Engineering, Massachusetts Institute of Technology, Carp
bridge, MA 02139, U.S.A.

t The pressurized sphere and cylinder problems for a class of (hypothetical) compressible materials, namely
harmonic materials, have been investigated recently[4, 5]. See also [3, Chapter 5; 6].
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materials. t In Section 4, we also examine the loss ofellipticity of the governing displacement
equations of equilibrium at the deformation at hand. The value of the applied pressure
(and the corresponding deformed inner radius) at which the cylinder first loses ellipticity is
obtained. It is shown that when the ratio of the outer undeformed radius to the inner
undeformed radius is larger than a critical value, loss ofellipticity occurs before the pressure
maximum is attained while when this ratio is smaller than this critical value, the converse
is true.

Analogous results for the corresponding problem for a hollow sphere are obtained in
Section 5.

2. THE PRESSURIZED HOLLOW CYLINDER;
FORMULATION OF BOUNDARY-VALUE PROBLEM

Let the open region Do = {(r, 0) Ia < r < b, °< 0 < 21t} denote the cross-section of a
right circular cylinder with inner radius a, and outer radius b, in its undeformed configur
ation. The cylinder is subjected to an internal pressure of magnitude p. The resulting
deformation is a one-to-one mapping which takes the point with polar coordinates (r,O) in
the undeformed region Do to the point (R,0) in the deformed region D. We assume that
the deformation is an axisymmetric plane strain one so that

R = R(r) > 0, 0 = 0 on Do, (2.1)

where the positive function R(r) is to be determined. Unless explicitly stated otherwise R(r)
is assumed to be twice continuously differentiable on a < r < b.

The polar components of the deformation gradient tensor F associated with (2.1) are
given by

F = diag (R(r), R(r)/r), (2.2)

where the dot denotes differentiation with respect to the argument. The Jacobian deter
minant J = det F is required to be positive and hence one has

R(r) > ° for a < r < b.

The principal stretches associated with the radial deformation (2.1) are

A., = R(r), ..1.8 = R(r)/r.

(2.3)

(2.4)

The right Cauchy-Green deformation tensor is defined as C = F7F and its fundamental
scalar invariants can be taken as

so that in the present problem

1== trC, J == (det C) 1/2 (2.5)

(2.6)

Next we tum to the constitutive relation and suppose that the cylinder is composed of
a Blatz-Ko material[7]. An extensive discussion of the stress response of this material to
various states of deformation may be found in [8]. This compressible, isotropic, elastic
material is characterized, in plane strain, by the elastic potential

W(I,J) == /-l/2(I/J2 +2J-4), /-l> 0, (2.7)

t An extensive study of this phenomenon for incompressible materials has been carried out recently by
Carroll[9]. It is of interest to note that this behavior does not occur in the cylindrical inflation of Mooney-Rivlin
or neo-Hookean (incompressible) materials whereas it does for spherical inflation of such materials[91.
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representing the strain energy per unit undeformed volume. Here J.L denotes the shear
modulus of the material at infinitesimal deformations. The true stress tensor 't' associated
with a plane deformation is given by

't' = (2J- I 0W/ol)FFT + (0 W/oJ)1.

On substituting from (2.7) and (2.6) into (2.8) one finds that

'RR(r) = J.L(1- R(r)AJ(rJ

tee(r) = J.L( 1- RJ(;;R(r)}

tRe = teR = 0, a < r < b.

(2.8)

(2.9a)

(2.9b)

(2.9c)

In the absence of body forces, the equilibrium equations div 't' =0 in the present case reduce
to the single equation:

(2.10)

This, together with (2.9), yields the following nonlinear second-order ordinary differential
equation for R(r) :

(2.11 )

The prescribed boundary conditions are

(2.12)

which, on using (2.9), can be written as

R(a)lP(a) = a(1 +p/J.L)-I,

R(b)lP(b) = b.

(2.13a)

(2.l3b)

In the next section we derive an exact solution to the boundary-value problem (2.11), (2.13).

3. SOLUTION OF BOUNDARY-VALUE PROBLEM

3.1. Solution
It has been shown recently in [I] that the second-order nonlinear ordinary differential

equation (2.11) may be reduced to a first-order equation on making the substitution

rR(r)
t(r) = R(r) (= ).,/).6) > o.

Equation (2.11) then yields

3ri-t(l-t)(t 2+t+4) = 0 for a < r < b,

(3.1)

(3.2)

where i = dt/dr. It ca!1 be shown that there is no loss of generality in assuming that t(r) is
less than unityt for a < r < b. Thus it then follows from (3.2) that t increases monotonically

t The arguments given in [IJ to justify this as,sumption carry over, with obvious modification, to the prescnt
problem. Notice that since the applied load is that of internal pressure only, one would expect .I., < I, .I., > I and
so one anticipat.es that I is indeed less than unity.
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o< t < I, dt/dr > 0 for a < r < b.

Upon integrating (3.2), one finds that

where C > 0 is a constant of integration and we have set

{6 (2t+ I)}h(t) = exp ~tan-l"Ji5 > O.

On the other hand (3.1) and (3.2) also give

I dR 3
--= >0
R dt (l-t)(t 2 +t+4) ,

which yields

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Again, D > 0 is a constant of integration. Observe from (3.3), (3.6) that the undeformed
and deformed radial coordinates (r, R) vary monotonically with t. Equations (3.4), (3.5),
(3.7) provide a parametric solution to the differential equation (2.11). The range of the
parameter t is

(3.8)

where ta > 0 is the value of t corresponding to r =a and is to be determined from (3.4) and
tb < I is determined in an analogous fashion. The components of true stress T RR, Tee may
also be expressed in terms of t on using (2.9), (3.1), (3.4) and (3.5). This leads to

(3.9)

(3.10)

From the definition of ta, tb, it follows from (3.4) that

(3.11 )

(3.12)

Finally the boundary conditions (2.12), in view of (3.9), may be written as

(3.13)
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(3.14)

Equations (3.11)-(3.14) consist of four equations for the four unknowns to, Ib, C and D. In
the following sub-section we discuss the existence of solutions to these equations.

3.2. Discussion
We eliminate the integration constant C between eqns (3.11) and (3.12) and obtain

(3.15)

where g(t) is given by

(3.16)

Also from (3.13) and (3.14), eliminating the constants C/D 2
, one has

(3.17)

Thus we now have two eqns (3.15) and (3.17) for the two unknowns to and lb' The function
g(t) in eqn (3.16) tends to infinity as 1-+ 0+, decreases monotonically as I increases and
has the value zero when t = 1. Thus for a given ratio of outer undeformed radius b to inner
undeformed radius a, one can always express to in terms of th and vice versa. We may write

(3.18)

where rx = bla and j is an implicit function. Thus, for a given applied pressure p, if (3.17)
with tb expressed as in (3.18), can be solved for a number 10 such that 0 < to < 1, then (3.18)
provides a number tb and (3.11 )-(3.14) is the desired solution.

In order to verify that (3.17) can indeed be solved for an appropriate value of la' we
consider the auxiliary function Q(ta) defined by

(3.19)

which appears on the right-hand side of (3.17), when (3.18) is taken into account. For
convenience here, we have writtenj(la) =j(ta, rx). One can readily show that

1· dQ(ta) 0Im-->
'.... 0+ d/a '

lim Q(ta) = 1,
'..... 1-

1· dQ(la) 01m --< .
1.... 1- d/a

(3.20)

It follows that for 0 < la < 1, there exists a maximum value for Q, with the corresponding
value ofP given by (3.17) as p = Pm. Thus, if 0 < P < Pm' there exist at least two solutions
for la' It is shown in [10] that Q has only one local maximum and so exactly two solutions
for ta exist.

Finally, we observe that the deformed inner radius R(a), given by (3.7) with I = la'
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may be written as

on using (3.11) and (3.13).
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4. RESULTS AND DISCUSSION

(3.21)

We now examine some features of the results derived in the previous section and
consider some illustrative examples.

4.1. Thin shells
When the radius ratio IX = bla is very near to unity, it is not difficult to express the

relation (3.18) between la and tb explicitly. Let

and assume

IX = I +1:, I: = (b-a)la(<< I), (4.1)

(4.2)

where AU) is an, as yet, unknown function. Substituting (4.1), (4.2) into eqn (3.15) and
neglecting second-order terms in I: yields A(t) = 1/3(t2+ t+4)(I- t)1 and so (4.2) then reads

(4.3)

Upon substituting from (4.3) into eqn (3.17), one obtains an explicit relation between ta

and the prescribed pressure, which is given, to leading order, by

(4.4)

It is clear from (4.4) that p has only one maximum. The deformed cavity radius R(a), is
given by (3.21). In the present case, where p is given by (4.4), eqn (3.21) yields, to leading
order,

R(a) = r 3/4
a a, (4.5)

where the value of fa corresponding to a prescribed pressure p is found from (4.4). A graph
of the ratio of the deformed radius to undeformed radius vs pressure, according to (4.4),
(4.5), is shown in Fig. 1. As the pressure p is increased from zero, the deformed radius
increases until p reaches a maximum value of 0.385j.Le, where R(a) = 1.510a. Subsequently
p decreases even though the radius still increases. This phenomenon is well known in finite
elasticity, especially for incompressible materials (see e.g. Ogden[3], pp. 283-287 for the
spherical thin shell and the compreh~nsive recent study by Carroll[9]).

4.2. Thick cylinder
For a thick-walled cylinder, the relation between ta and tb is implicit and thus com

putational work is necessary, in general to analyie the behavior of pressure vs radius. As
observed in Section 3, it is shown analytically iIi [10] that p has only one maximum point.
A graph of the ratio of the deformed radius to undeformed radius vs pressure, obtained
from solving (3.15), (3.17) numerically and using (3.21), is shown in Fig. 2,.~or different
values of the radius ratio IX = bla. As is shown in Fig. 2, as the thickness of the cylinder
increases, the value of the maximum pressure increases and it occurs at increasingly larger
values of R(a)la, as might be expected.
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Fig. I. Applied pressure vs ratio of deformed to undeformed radius for a thin cylindrical shell.

The bottom curve in Fig. 2, corresponding to IX = 1.05, is seen to confirm the thin shell
results discussed in sub-section 4.1. On the other hand, as IX -+ CX) (i.e. a cavity in an infinite
medium), the pressure maximum is reached asymptotically as the deformed radius tends to
infinity, and has the value Pm = 1.51677jJ. Thus we recover the result of [1] for this case.

4.3. Linearization
In the particular case when the applied pressure is small (P/jJ« 1), (3.19) and (3.21)

show that ta ~ 1, tb ~ 1 and so t(r) ~ 1 throughout the body. Let

(4.6)

where the small parameters 15(r), 15a , 15b are unknown. Substituting (4.6) into (3.9), (3.10),
(3.13), (3.14) yields, to leading order,

(4.7)

p
Ii

1.4

1.2

1.0

0.8

0.8

0.4

0.2

0.0
0

a·loa

Fig. 2. Applied pressure vs ratio ofdeformed to undeformed radius for hollow cylinders for different
radius ratios IX = b/a. The dotted curve connects the points (P,/ii, R(a)/a), where p, denotes the

pressure at which ellipticity is lost.
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LRR = fl«(jh -(j),

plfl = (ja-(jh.

(4.8)

(4.9)

Also from (3.4), (3. I I), using (4.6), one obtains

(4.10)

Finally the relation between (ja and (jb may be obtained upon substituting (4.6) into (3. I 5).
This leads to

(4. J 1)

The resulting linearized stress fields given by (4.7~(4.11) yield the well-known results of
the infinitesimal theory of elasticity (see e.g. Timoshenko and Goodier[ll], p. 71):

(4.12)

and

(4.13)

4.4. Loss ofellipticity
It is well known that the displacement equations of equilibrium in finite elastostatics

may lose ellipticity at sufficiently severe deformations. In particular, for the Blatz-Ko
material, necessary and sufficient conditions (in terms of the principal stretches) for ellip
ticity have been obtained by Knowles and Stemberg[8]. In this sub-section, we examine the
implications of these results for the pressurized cylinder problem at hand.

From eqn (4.8) of [8], it follows that ellipticity holds for the Blatz-Ko material (2.7)
at the axisymmetric solution (2.1) if and only if the principal stretches A." ..1.9 introduced in
(2.4) are such that

2-Jj < t < 2+.j3, (t = ..1.,/..1.9), (4.14)

Since in the present problem we have 0 < t < I, it follows that the right hand inequality
here always holds. On the other hand, it is clear that ellipticity will be lost whenever the
left inequality is violated.

In view of the monotonic increasing character of t as r increases [see (3.3)], and recalling
that 0 < ta < t < tb < I, it follows that ellipticity is first lost at r = a and that this occurs
when ta = 2-.j3. For a given value of radius ratio ex =bfa, the corresponding value of the
applied pressure, say p., is found from (3.17), where the value of tb is given by (3.15) with
ta= 2-j1. The corresponding value of R(a)/a then follows from (3.21) with p = Pe and
ta= 2-}3. In Fig. 2, the pairs of values (P./fl, R(a)/a), for different radius ratios ex, are
joined by the dotted curve. There is a critical value of the radius ratio ex = exc say, at which
Pe = Pm· This may be found numerically from (3.17), (3.18), (3.19) with ta= 2-j3, and
we find

(4.15)

Thus, for ex < ex., the load maximum is reached before loss of ellipticity occurs while for
ex > ex., the converse is true.

In either case, after loss of ellipticity, the existence of the smooth solutions obtained
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here is still ensured. In addition, the possibility exists that non-smooth deformation fields,
with discontinuous deformation gradients and stresses, might occur. The argument provided
in [1] shows that axisymmetric solutions with such discontinuities do not exist in the present
problem. Weak solutions, if they exist, must necessarily be non-axisymmetric. There is also
the possibility that surface bifurcations might occur, as in [I], but we shall not pursue this
issue here.

5. THE PRESSURIZED HOLLOW SPHERE

In this section, we describe briefly how the foregoing considerations can be applied to
the analogous problem of an internally pressurized hollow sphere.

5.1. Formulation ofproblem
We are concerned in what follows with the pressure loading of a sphere composed of

the Blatz-Ko material. Let

Do = {(r,8,1jJ)la < r < b,O < 8 ~ 21t,0 ~ IjJ ~ 1t},

denote the hollow sphere in its undeformed configuration. The sphere is subjected to an
internal pressure p.

The resulting deformation is a one-to-one mapping which takes the point with spherical
polar coordinates (r, 8, 1jJ) to the point (R, e, C1» in the deformed region D. We assume that
the deformation is an axisymmetric one so that

R = R(r) > 0, e = () and C1> = IjJ on Do, (5.1)

where R(r) is to be determined.
The polar components of the deformation gradient tensor associated wth (5.1) are

given by

F = diag (R(r), R(r)/r, R(r)/r).

The principal stretches associated with the radial deformation (5.1) are

)", = R(r), ),,0 = )",p = R(r)/r.

(5.2)

(5.3)

The Blatz-Ko material is characterized in the three-dimensional case, by the elastic
potential (see e.g. [7])

The principal components of true stress T are given by

;". aw
'Cjj = ),,1),,:),,3 a),,; (no sum on z)

= Jl(I-r l ),,;-2), )=),,1),,2),,3'

Substitution from (5.3) and (5.4) into (5.5) yields

'CRR(r) = Jl(1- R~~3).

'Cee(r) = 'C~(r) = Jl(I- ;;4).

(5.4)

(5.5)

(5.6a)

(5.6b)
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In the absence of body force, the equilibrium equations div t = 0 reduce to

(5.7)

which, by virtue of (5.6), yields the nonlinear second-order ordinary differential equation

The prescribed (pressure) boundary conditions are

'RR = -pat r = a,

'RR = 0 at r =b.

(5.8)

(5.9a)

(5.9b)

5.2. Solution ofboundary-value problem
Just as in the two-dimensional case, eqn (5.8) may be reduced to a first-order equation

on making the substitution

rR(r)
t(r) = R(r) > O.

Equation (5.8) then yields

3ri(r)-t(l-t)(2t 2+2t+5) = 0 for a < r < b,

(5.10)

(5.11)

where i = dt/dr. Again we assume that t(r) is less than unity for a < r < b and so deduce
from (5.11) that

o< t < 1, dt/dr > 0 for a < r < b.

Integration of (5.11) yields

where C is a positive constant of integration and the function d(t) is defined by

d(t) =exp {2 tan- 1et
; I)} > O.

Also (5.10), (5.11) yield

where D > 0 is a constant of integration. The range of the parameter t is

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

The components of true stress tRR, tee may also be expressed in terms of t on using
(5.6), (5.10), (5.13) and (5.14). This leads to

(5.17)
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for la < I < lb'

From the definition of la and Ib , it follows from (5.13) that

Finally the boundary conditions (5.9), in view of (5.17), may be written as

1567

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

The four equations (5.19~(5.22) for the four unknowns la, Ib, C, D are analogous
to eqns (3.11H3.14) obtained in the two-dimensional case. It can be verified that the
considerations of sub-section 3.2 carry over, with obvious modification, to the three
dimensional equations of concern here. In particular, the analog of (3.21) in the present
case is given by

R(a) ()-1/5---a- = I;; 3/5 1+ ~ (5.23)

5.3. Thin shell
When the radius ratio a( = b/a) is very near to unity, the explicit relation between la

and prescribed pressure, analogous to (4.4), is given by

p b-a- = 2e{ta - I~)+O(e 2
), e = -« 1.

~ a

Similarly, the analog of (4.5), on using (5.23), (5.24) becomes

(5.24)

(5.25)

A graph of the ratio of the deformed radius to undeformed radius vs pressijre, according
to (5.24) and (5.25), is shown in Fig. 3. Again we observe that the pressure first increases
as the shell inflates, reaches a maximum with value 0.7698JLB where R(a) = 1.390a and
decreases on further inflation.

5.4. Thick shell
For a thick shell, numerical computation yields the graph of pressure vs deformed

radius shown in Fig. 4. The behavior of the spherical shell is similar to that of the cylindrical
shell shown in Fig. 2.
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.8

.6

.4

.2

1.0 1.5 2.0 2.5 3J) 3.5
RI_)/_

Fig. 3. Applied pressure vs ratio of defonned to undefonned radius for a thin spherical shell.

5.5. Linearization
For small pressure (PIJ.l« 1), we find again that to ~ 1, tb ~ 1 and so t(r) ~ I through

out the body. Let

(5.26)

where the small parameters bo, Db and b(r) are unknown. We find that

'99 = 2J.l13(D+ 2Db)'

'RR = 4J.l13(bb-b),

plJ.l = 4/3(b.-bb)'

b(r) = (a 3Ir 3)Do,

Db = 0:-3b., 0: = bla.

(5.27a)

(5.27b)

(5.27c)

(5.27d)

(5.27e)

a,s

_----a-'~-_
2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

o 0 ~~;:::?:¥~~::;::::::~~~~~~==='.B/l
. 0.0 1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0

Fig. 4. Applied pressure vs ratio of defonned to undefonned radius for hollow spheres for different
radius ratios IX = bla. The dotted curve connects the points (P./J.I. R(a)/a). where P. denotes the

pressure at which ellipticity is lost.
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The resulting linearized stress fields given by (5.27) again yield the well-known results of
the infinitesimal theory of elasticity (see e.g. Timoshenko and Goodier[1I], p. 395),

(5.28a)

(5.28b)

5.6. Loss of ellipticity
In the three-dimensional case also, for the Blatz-Ko material, necessary and sufficient

conditions for ellipticity of the displacement equations of equilibrium have been obtained
by Knowles and Sternberg[8]. Thus from eqn (3.1) of [8] it follows that ellipticity holds for
the Blatz-Ko material (5.4) at the axisymmetric solution (5.1) if and only if the principal
stretches A" Ao, At/> introduced in (5.3) are such that

2-13 < A,lAo < 2+13,
2-13 < A,IAt/> < 2+13,
2-13 < At/>IAo < 2+13·

(5.29a)

(5.29b)

(5.29c)

Since in this problem we have Ao = At/>, (5.29c) is automatically satisfied and (5.29a), (5.29b)
are equivalent to

(5.30)

The inequality on the right in (5.30) always holds (see (5.12» and, by virtue of the monotone
increasing character of t as r increases (see (5.12», ellipticity is first lost at r = a and this
occurs when ta = 2-13. For a given value of the radius ratio a = bla, the corresponding
value of the applied pressure, say p., is found in a similar manner to the two-dimensional
case on using (5.19)-(5.22). The corresponding value of R(a)la then follows from (5.23)

with p =P. and ta = 2 - )3. In Fig. 4, the pairs of values (P.IIl, R(a)la) for different radius
ratios a are joined by the dotted curve. As in the case of the two-dimensional problem,
there is a critical value of the radius ratio a = ac at which Pc = Pm. This may be found
numerically and we find that

Thus for a < a" the pressure maximum is reached before loss of ellipticity while for a > a"
the converse is true. Finally, after loss of ellipticity, the non-existence of non-smooth
axisymmetric solutions may be demonstrated by an obvious modification of the argument
given in [1]. The possibility of surface bifurcations also exists, but we shall not pursue this
here.
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